Basics on Geodatabases

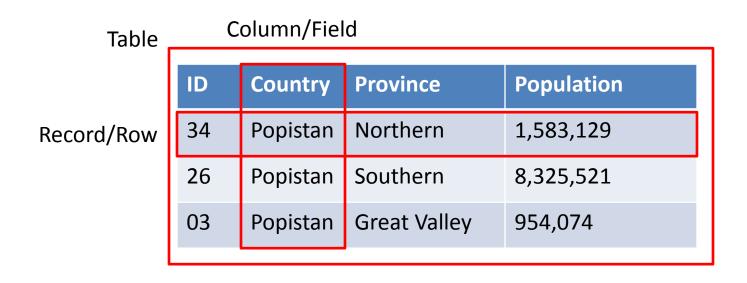
U.S. Department of Commerce Economics and Statistics Administration U.S. CENSUS BUREAU census.gov

GIS Data Management

U.S. Department of Commerce Economics and Statistics Administration U.S. CENSUS BUREAU census.gov

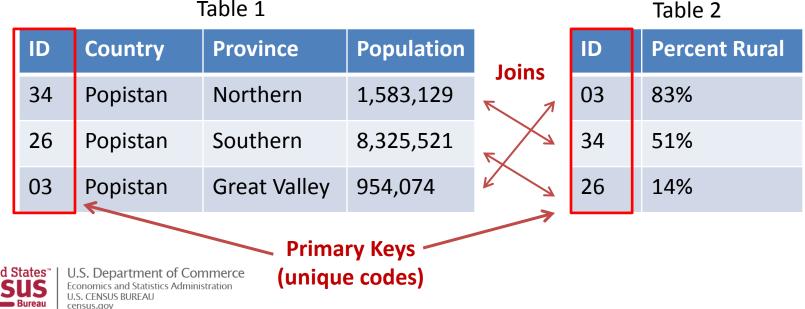
File and Folder System

- A storage system which uses the default file and folder structure found in operating systems.
- Uses the non-DB formats we mentioned previously (shapefiles, text/Excel files).
- Data stored on individual computers or shared over a local network.


Database (DB)

- A storage system designed to manage large datasets efficiently.
- Users can query and manipulate data using joins, relates, and a Structured Query
 Language (SQL).
- A database can exist on your computer, on a private network (such as your office), or on a server connected to the Internet.

Database Fundamentals


- Databases are a collection of tables.
- Each table contains columns (fields) and rows (records).

Database Fundamentals

- Tables can be joined to each other using a unique identifier or code (a **primary key**).
- It is good practice to assign a primary key to every unit of census geography (including administrative and statistical).
 - Use an alphanumeric code.

Table 1

Database Management System (DBMS)

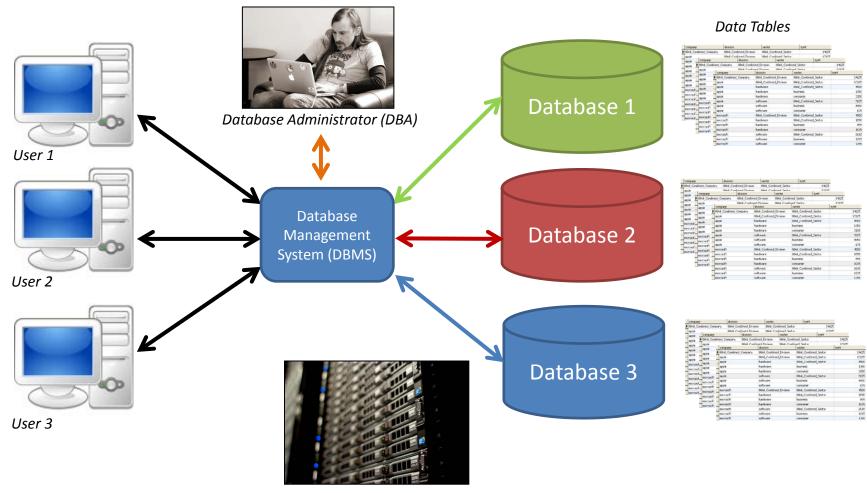
- Software designed to efficiently administer one or more database(s).
- In action, users rarely distinguish between a "DBMS" and "database".
- Examples you may be familiar with include Microsoft Access and ArcGIS.
 - Note: A Microsoft Excel spreadsheet is not a database, though it does share many features.
- You may also be familiar with more advanced DBMS software, such as PostgreSQL, MySQL, and Microsoft SQL Server.

Single User Databases

- Single user means only one user at a time can access the database.
 - There may be minimal support for multiple users.
- Useful for managing data for small projects with few participants.
- These databases are generally stored locally (i.e., on your computer) or on a shared drive for minimal collaboration.
- Both Microsoft Access and ArcGIS can create single user databases.

Multi-User Databases

- Nearly always a DBMS such as PostgreSQL, Microsoft SQL Server, or MySQL.
- Designed to handle multiple users retrieving from and updating the same database simultaneously.
- Often just called an enterprise database.
 - "Enterprise" refers to an office or organization.



Multi-User Databases

- Managing the edits of multiple users at once is called versioning or deconflicting.
 - Versioning stores a record of every user's transaction.
 - Thus, each database edit is reversible.
- The databases are stored remotely and accessed over a private network or the Internet.
- Data processing can either occur on the network or on your local computer.

Diagram of a Multi-User Database

U.S. Department of Commerce Economics and Statistics Administration U.S. CENSUS BUREAU census.gov Servers hosting DBMS and DBs

Spatial Databases

- Also called geospatial databases, geographic databases, or geodatabases.
- Possess all of the same features of other databases, plus the ability to store location data.

Database Advantages

- The file/folder system is easier for quick projects.
- However, storing geographic data in a database provides numerous advantages over the file/folder system:
 - Data are stored more efficiently.
 - Can separate geographic features and attribute data.
 - Larger datasets are easier to access and manage.
 - Specific data can be retrieved using queries.
 - The quality of geographic features can be managed more effectively with topology.
 - Much more on topology later!

Realities

- Databases require extra knowledge of administration, querying, managing joins/relates, etc.
- A multi-user enterprise database, while advantageous, requires expensive hardware, persistent network connectivity, and highly skilled IT support.
- May not be feasible for all organizations.

Group Discussion

How do you store data in your organization?

Would you like to use a different method?

Geodatabases in ArcGIS

U.S. Department of Commerce Economics and Statistics Administration U.S. CENSUS BUREAU census.gov

Geodatabases in ArcGIS

- As we discussed previously:
 - Geographic data can be stored in many different formats.
 - Data can also be stored using standalone files and folders or a database.
- ArcGIS includes functionality to create geodatabases for storing, editing, and managing your data.
- These geodatabases include a number of useful tools which we will explore in detail.
 - Note: the terms "geodatabase", "spatial database", and "database" are used interchangeably.

Fundamental Concepts

- The preferred format for storing data in the ArcGIS environment is the File Geodatabase.
 - Another format, the Personal Geodatabase, is obsolete.
- You can store all types of data in the file geodatabase, including vector, raster, and non-spatial tables.

Important Caveats

- The file geodatabase is designed as a single user database.
 - Very limited multi-user support.
- The file geodatabase is a **proprietary format**.
 - Not easily compatible with other GIS software.

File Geodatabase vs. Shapefile

Feature	Shapefile		File Geodatabase	
File size limits	2GB	*	Unlimited (TBs)	\checkmark
Storage efficiency	Less efficient	×	More efficient	\checkmark
Performance	Slower	*	Faster	\checkmark
Raster support	No	×	Yes	\checkmark
Enforcing consistency <u>within</u> and <u>between</u> files	No	×	Yes (topology, schemas, projections)	✓
Compatibility	Most GIS software	\checkmark	ArcGIS Only	*
Portability	"Zip and ship"	\checkmark	"Zip and ship"	\checkmark
Multi-User	No	*	Limited	1

Structure of File Geodatabases

- Several file types can exist in the file geodatabase:
 - Feature dataset: A geospatial "container" which stores projection information and topology for vector data.
 - Feature class: Geospatial point, line, or polygon (vector) data.
 - Non-spatial table: A set of attributes which are commonly linked to a feature class.
 - Raster: Sits independently within a file geodatabase and cannot be stored in a feature dataset.
 - Topology file: Stores the rules which enforce data integrity within the database.
 - Relationship file: Creates a join between multiple feature classes and/or non-spatial tables.
 - Others: Raster mosaic/catalog, schematic dataset, toolbox, parcel fabric, annotation, network, terrain.
- We will work with feature datasets, feature classes, and tables.

Good Practices: In General

- Keep spatial data and non-critical attributes separate.
 - Exception: attributes critical to the geographic definition of the features in the dataset (e.g., place names, identification codes).
- Use feature datasets to store related geography.
 - Can be structured many different ways.
 - E.g., province-by-province, grouped by type of feature.

Good Practices: Data Preservation

- Maintain separate databases for production files and working files.
 - E.g., one database of data approved for field staff to use and another for data being edited by head office staff.
 - Data from the working DB feeds into the production DB.
 - If you want to experiment, export your feature data to a scratch database or a shapefile.
 - Never edit production data directly!
- Produce daily or weekly backups of your database and store in a safe place.
 - E.g., a removable hard drive locked in a storage room.

Other Options for geo-enabled RDBMs

Options have increased dramatically, here are some of the major players:

Proprietary

- Oracle Spatial
- Microsoft SQL (post 2008)

Open Source

- PostGIS/Postgre
- SpatialLite

